Each mL of 0.05 mol/L perchloric acid VS
= 32.836 mg of (C$_{32}$H$_{68}$N$_{2}$O$_{12}$)$_{2}$C$_{6}$H$_{6}$O$_{6}$

Containers and storage Containers—Tight containers.
Storage—Light-resistant, and almost well-filled, or under nitrogen atmosphere, and not exceeding 5°C.

Erythromycin
エリスロマイシン

[C$_{42}$H$_{69}$NO$_{13}$]: 733.93
(2R,3S,4S,5R,6R,8R,10R,11R,12S,13R)-5-(3,4,6-Trideoxy-3-dimethlamino-β-D-xylo-hexopyranosloxy)-3-(2,6-dideoxy-3-C-methyl-3-O-methyl-α-L-ribo-
hexopyranosloxy)-6,11,12-trihydroxy-
2,4,6,8,10,12-hexamethyly-9-oxopentadec-13-olide
[114-07-8]

Erythromycin conforms to the requirements of Erythromycin in the Minimum Requirements for Antibiotic Products of Japan.

Description Erythromycin occurs as white to light yellowish white powder. It has a bitter taste.
It is freely soluble in methanol, in ethanol (95) and in acetone, and soluble in diethyl ether, and very slightly soluble in water.

Erythromycin Ethylsuccinate
エチルコハク酸エリスロマイシン

[C$_{46}$H$_{70}$NO$_{16}$]: 862.05
(2R,3S,4S,5R,6R,8R,10R,11R,12S,13R)-3-
[3,4,6-Trideoxy-2-O-(3-ethoxyacrylpropionylo)l-
3-dimethylamino-β-D-xylo-hexopyranosloxy]-1-
(2,6-dideoxy-3-C-methyl-3-O-methyl-α-L-ribo-
hexopyranosloxy)-6,11,12-trihydrkoxy-
2,4,6,8,10,12-hexamethyly-9-oxopentadec-13-olide
[41342-53-4]

Erythromycin Ethylsuccinate contains not less than 780 μg (potency) per mg, calculated on the anhydrous basis. The potency of Erythromycin Ethylsuccinate is expressed as mass (potency) of erythromycin (C$_{42}$H$_{68}$NO$_{13}$): 733.93.

Description Erythromycin Ethylsuccinate occurs as a white powder.
It is freely soluble in methanol and in acetone, soluble in ethanol (95), and practically insoluble in water.

Identification (1) Dissolve 3 mg of Erythromycin Ethylsuccinate in 2 mL of acetone, and add 2 mL of hydrochloric acid: an orange color develops and is immediately changed to red to deep purple.
(2) Determine the infrared absorption spectrum of Erythromycin Ethylsuccinate, previously dried in a desicator (reduced pressure, silica gel) for 24 hours, as directed in the potassium bromide disk method under the Infrared Spectrophotometry, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Water Not more than 5.0% (0.5 g, volumetric titration, direct titration).

Assay Perform the test according to the Cylinder-plate method as directed under the Microbial Assay for Antibiotics according to the following conditions.
(1) Test organism—Staphylococcus aureus ATCC 6538
(2) Culture medium—Use the medium i in 3) Medium for other organisms under (1) Agar media for seed and base layer. Adjust the pH of the medium so that it will be 7.8 to 8.0 after sterilization.
(3) Standard solution—Weigh accurately an amount of Erythromycin Reference Standard equivalent to about 0.05 g (potency), dissolve in 50 mL of methanol, add 0.1 mol/L phosphate buffer solution, pH 8.0 to make exactly 100 mL, and use this solution as the standard stock solution. Keep the standard stock solution at 5°C or below and use within 7 days. Take exactly a suitable amount of the standard stock solution before use, add 0.1 mol/L phosphate buffer solution, pH 8.0 to make solutions so that each mL contains 20 μg (potency) and 5 μg (potency), and use these solutions as the high concentration standard solution and the low concentration standard solution, respectively.
(4) Sample solution—Weigh accurately an amount of Erythromycin Ethylsuccinate equivalent to about 0.05 g (potency), dissolve in 50 mL of methanol, and add 0.1 mol/L phosphate buffer solution, pH 8.0 to make exactly 100 mL. Take exactly a suitable amount of the solution, add 0.1 mol/L phosphate buffer solution, pH 8.0 to make solutions so that each mL contains 20 μg (potency) and 5 μg (potency), and use these solutions as the high concentration sample solution and the low concentration sample solution, respectively.

Containers and storage Containers—Tight containers.