Flurazepam Hydrochloride

\[\text{C}_{21}\text{H}_{23}\text{ClF}_{2}\text{N}_{2}\text{O}.\text{HCl}: \text{424.34} \]
7-Chloro-1-[2-(diethylamino)ethyl]-5-(2-fluorophenyl)-1,3-dihydro-2H-1,4-benzodiazepin-2-one monohydrochloride [36105-20-1]

Flurazepam Hydrochloride, when dried, contains not less than 99.0% of \(\text{C}_{21}\text{H}_{23}\text{ClF}_{2}\text{N}_{2}\text{O}.\text{HCl} \).

Description Flurazepam Hydrochloride occurs as white to yellowish white crystals or crystalline powder.
- It is freely soluble in water, in ethanol (95), in ethanol (99.5) and in acetic acid (100).
- Melting point: about 197°C (with decomposition).

Identification (1) Determine the absorption spectrum of a solution of Flurazepam Hydrochloride in sulfuric acid-water (1 in 100,000) as directed under the Ultraviolet-visible Spectrophotometry, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.
- (2) Determine the infrared absorption spectrum of Flurazepam Hydrochloride, previously dried, as directed in the potassium chloride disk method under the Infrared Spectrophotometry, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.
- (3) A solution of Flurazepam Hydrochloride (1 in 20) responds to the Qualitative Tests for chloride.

pH Dissolve 1.0 g of Flurazepam Hydrochloride in 20 mL of water: the pH of this solution is between 5.0 and 6.0.

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Flurazepam Hydrochloride in 10 mL of water: the solution is clear and colorless to pale yellow.
- (2) Sulfate—Perform the test with 1.5 g of Flurazepam Hydrochloride. Prepare the control solution with 0.35 mL of 0.005 mol/L sulfuric acid VS (not more than 0.011%).
- (3) Heavy metals—Proceed with 1.0 g of Flurazepam Hydrochloride in a platinum crucible according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).
- (4) Related substances—Dissolve 0.05 g of Flurazepam Hydrochloride in 5 mL of ethanol (95), and use this solution as the sample solution. Pipet 1 mL of the sample solution, add ethanol (95) to make exactly 50 mL. Pipet 1 mL of this solution, add ethanol (95) to make exactly 10 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under the Thin-layer Chromatography. Spot 20 μL each of the sample solution and the standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Place the plate in a chamber filled with ammonia vapor, allow to stand for about 15 minutes, and immediately develop the plate with a mixture of diethyl ether and diethylamine (39:1) to a distance of about 12 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): not more than 3 spots other than the principal spot and the spot on the starting point from the sample solution appear, and are not more intense than the spot from the standard solution.

Loss on drying Not more than 0.5% (1 g, 105°C, 4 hours).

Residue on ignition Not more than 0.10% (1 g).

Assay Weigh accurately about 0.3 g of Flurazepam Hydrochloride, previously dried, dissolve in 10 mL of acetic acid (100), add 40 mL of acetic anhydride, and titrate with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 21.217 mg of \(\text{C}_{21}\text{H}_{23}\text{ClF}_{2}\text{N}_{2}\text{O}.\text{HCl} \)

Containers and storage Containers—Tight containers.

Flurbiprofen

フールビプロフェン

\[\text{C}_{13}\text{H}_{17}\text{FO}_{2}: \text{244.26} \]
\((\text{RS})-2-(2-\text{Fluorobiphenyl}-4-\text{yl})\text{propanoic acid} [5104-69-4]\)

Flurbiprofen, when dried, contains not less than 98.0% of \(\text{C}_{13}\text{H}_{17}\text{FO}_{2} \).

Description Flurbiprofen occurs as a white, crystalline powder. It has a slightly irritating odor.
- It is freely soluble in methanol, in ethanol (95), in acetone and in diethyl ether, soluble in acetonitrile, and practically insoluble in water.
- A solution of Flurbiprofen in ethanol (95) (1 in 50) shows no optical rotation.

Identification (1) Determine the absorption spectrum of a solution of Flurbiprofen in methanol (1 in 200,000) as directed under the Ultraviolet-visible Spectrophotometry, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.
- (2) Determine the infrared absorption spectrum of Flurbiprofen, previously dried, as directed in the potassium bromide disk method under the Infrared Spectrophotometry, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Melting point 114 - 117°C