mol/L hydrochloric acid VS (not more than 0.007%).

(4) Sulfate—Perform the test with 2.0 g of d-Mannitol. Prepare the control solution with 0.40 mL of 0.005 mol/L sulfuric acid VS (not more than 0.010%).

(5) Heavy metals—Proceed with 5.0 g of d-Mannitol according to Method I, and perform the test. Prepare the control solution with 2.5 mL of Standard Lead Solution (not more than 5 ppm).

(6) Nickel—Dissolve 0.5 g of d-Mannitol in 5 mL of water, add 3 drops of dimethylglyoxime TS and 3 drops of ammonia TS, and allow to stand for 5 minutes: no red color develops.

(7) Arsenic—Prepare the test solution with 1.5 g of d-Mannitol according to Method I, and perform the test using Apparatus B (not more than 1.3 ppm).

(8) Sugars—To 5.0 g of d-Mannitol add 15 mL of water and 4.0 mL of dilute hydrochloric acid, and heat under a reflux condenser in a water bath for 3 hours. After cooling, neutralize with sodium hydroxide TS (indicator: 2 drops of methyl orange TS), and add water to make 50 mL. Pipet 10 mL of this solution into a flask, boil gently with 10 mL of water and 40 mL of Fehling's TS for 3 minutes, and allow to stand to precipitate copper (I) oxide. Filter the supernatant liquid through a glass filter (G4), wash the precipitate with hot water until the last washing no longer shows an alkaline reaction, and filter the washings through the glass filter described above. Dissolve the precipitate in 20 mL of iron (III) sulfate TS in the flask, filter through the glass filter described above, and wash the filter with water. Combine the washings and the filtrate, heat to 80°C, and titrate with 0.02 mol/L potassium permanganate: the consumed volume is not more than 1.0 mL.

Loss on drying Not more than 0.30% (1 g, 105°C, 4 hours).

Residue on ignition Not more than 0.10% (1 g).

Assay Weigh accurately about 0.2 g of d-Mannitol, previously dried, and dissolve in water to make exactly 100 mL. Pipet 10 mL of the solution into an iodine flask, add exactly 50 mL of potassium periodate TS, and heat for 15 minutes in a water bath. After cooling, add 2.5 g of potassium iodide, stopper tightly, and shake well. Allow to stand for 5 minutes in a dark place, and titrate with 0.1 mol/L sodium thiosulfate VS (indicator: 1 mL of starch TS). Perform a blank determination.

Each mL of 0.1 mol/L sodium thiosulfate VS = 1.8217 mg of C6H12O6

Containers and storage Containers—Tight containers.

Maprotiline Hydrochloride

塩酸マプロチリン

C20H20N.HCl: 313.86

N-[3-ethanooanthracene-9-yl]propyl]-N-methylamine monohydrochloride [U0347-81-6]

Maprotiline Hydrochloride, when dried, contains not less than 99.0% of C20H20N.HCl.

Description Maprotiline Hydrochloride occurs as a white crystalline powder.

It is soluble in methanol and in acetic acid (100), sparingly soluble in ethanol (99.5), and slightly soluble in water.

Melting point: about 244°C (with decomposition).

Identification (1) Determine the absorption spectrum of a solution of Maprotiline Hydrochloride in methanol (1 in 10,000) as directed under the Ultraviolet-visible Spectrophotometry, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelength.

(2) Determine the infrared absorption spectrum of Maprotiline Hydrochloride, previously dried, as directed in method of preparation Prepare as directed under Injections, with d-Mannitol. No preservative is added.

Description d-Mannitol Injection is a clear, colorless liquid. It has a sweet taste.

It may precipitate crystals.

Identification Concentrate d-Mannitol Injection on a water bath to make equal to the saturated solution. Proceed with 5 drops of this solution as directed in the Identification (1) under d-Mannitol.

pH 4.5 – 7.0

Residue on ignition Evaporate an exactly measured volume of d-Mannitol Injection, equivalent to 1.0 g of d-Mannitol, on a water bath to dryness, and perform the test: the mass of residue is not more than 1.0 mg.

Pyrogen Perform the test with d-Mannitol Injection stored in a container in a volume exceeding 10 mL: it meets the requirements of the Pyrogen Test.

Assay Measure exactly a volume of d-Mannitol Injection, equivalent to about 5 g of d-Mannitol (C6H12O6), and add water to make exactly 250 mL. To exactly 10 mL of this solution add water to make exactly 100 mL. Measure exactly 10 mL of this solution into an iodine flask, and proceed as directed in the Assay under d-Mannitol.

Each mL of 0.1 mol/L sodium thiosulfate VS = 1.8217 mg of C6H12O6

Containers and storage Containers—Hermetic containers.
the potassium chloride disk method under the Infrared Spectrophotometry, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers. If any difference appears between the spectra, recrystallize the sample with ethanol (99.5), filter, dry the crystals so obtained, and perform the test with the crystals.

(3) To 5 mL of a solution of Maprotiline Hydrochloride (1 in 200) add 2 mL of ammonia TS, heat on a water bath for 5 minutes, cool, and filter. Acidify the filtrate with dilute nitric acid: the solution responds to the Qualitative Tests for chloride.

Purity (1) Heavy metals—Proceed with 2.0 g of Maprotiline Hydrochloride according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(2) Related substances—Dissolve 0.10 g of Maprotiline Hydrochloride in 5 mL of methanol, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add methanol to make exactly 200 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under the Thin-layer Chromatography. Spot 10 µL each of the sample solution and the standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop with a mixture of 2-butanol, diluted ammonia solution (28) (1 in 3) and ethyl acetate (14:5:4) to a distance of about 10 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the number of the spot other than the principal spot from the sample solution is not more than 2 and they are not more intense than the spot from the standard solution.

Loss on drying Not more than 0.5% (1 g, 105°C, 3 hours).

Residue on ignition Not more than 0.10% (1 g).

Assay Weigh accurately about 0.25 g of Maprotiline Hydrochloride, previously dried, dissolve in 180 mL of acetic acid (100), add 8 mL of a solution of bismuth nitrate pentahydrate in acetic acid (100) (1 in 50), and titrate with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 31.386 mg of C₂₉H₃₈ClN₆.HCl

Containers and storage Containers—Well-closed containers.

Meclofenoxate Hydrochloride

塩酸メクロフェノキサート

\[
\text{C}_{13}\text{H}_{16}\text{ClNO}_{3}\text{HCl} : 294.17
\]

2-Dimethylaminoethyl 4-chlorophenoxyacetate monohydrochloride [3685-84-5]

Meclofenoxate Hydrochloride contains not less than 98.0% of C₁₃H₁₆ClNO₃.HCl, calculated on the anhydrous basis.

Description Meclofenoxate Hydrochloride occurs as white crystals or crystalline powder. It has a faint, characteristic odor and a bitter taste. It is freely soluble in water and in ethanol (95), sparingly soluble in acetic anhydride, and practically insoluble in diethyl ether.

The pH of a solution of Meclofenoxate Hydrochloride (1 in 20) is between 3.5 and 4.5.

Identification (1) To 0.01 g of Meclofenoxate Hydrochloride add 2 mL of ethanol (95), dissolve by warming if necessary, cool, add 2 drops of a saturated solution of hydroxylammonium chloride in ethanol (95) and 2 drops of a saturated solution of potassium hydroxide in ethanol (95), and heat in a water bath for 2 minutes. After cooling, render the solution slightly acidic with dilute hydrochloric acid, and add 3 drops of iron (III) chloride TS: a red-purple to dark purple color develops.

(2) Dissolve 0.05 g of Meclofenoxate Hydrochloride in 5 mL of water, and add 2 drops of Reineck salt TS: a light red precipitate is formed.

(3) Determine the absorption spectrum of a solution of Meclofenoxate Hydrochloride (1 in 10,000) as directed under the Ultraviolet-visible Spectrophotometry, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(4) A solution of Meclofenoxate Hydrochloride (1 in 100) responds to the Qualitative Tests for chloride.

Melting point 139 – 143°C

Purity (1) Clarity and color of solution—Dissolve 0.5 g of Meclofenoxate Hydrochloride in 10 mL of water: the solution is clear and colorless.

(2) Sulfate—Perform the test with 1.0 g of Meclofenoxate Hydrochloride. Prepare the control solution with 1.0 mL of 0.005 mol/L sulfuric acid VS (not more than 0.048%).

(3) Heavy metals—Proceed with 1.0 g of Meclofenoxate Hydrochloride according to Method 1, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(4) Arsenic—Prepare the test solution with 1.0 g of Meclofenoxate Hydrochloride according to method 3, and perform the test using Apparatus B (not more than 2 ppm).

(5) Organic acids—To 2.0 g of Meclofenoxate Hydrochloride add 50 mL of diethyl ether, shake for 10 minutes, filter through a glass filter (G3), wash the residue with two 5-mL portions of diethyl ether, and combine the washings with the filtrate. To this solution add 50 mL of neutralized ethanol and 5 drops of phenolphthalein TS, and neutralize with 0.1 mol/L sodium hydroxide VS: the volume of 0.1 mol/L sodium hydroxide consumed is not more than 0.54 mL.

Water Not more than 0.50% (1 g, direct titration).

Residue on ignition Not more than 0.10% (1 g).

Assay Weigh accurately about 0.4 g of Meclofenoxate Hydrochloride, dissolve in 70 mL of acetic anhydride, and titrate with 0.1 mol/L perchloric acid VS until the color of