prepare the control solution with 0.35 mL of 0.005 mol/L sulfuric acid VS (not more than 0.028%).

(4) Ammonium—Perform the test with 0.25 g of L-Valine. Prepare the control solution with 5.0 mL of Standard Ammonium Solution (not more than 0.02%).

(5) Heavy metals—Proceed with 1.0 g of L-Valine according to Method 1, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(6) Arsenic—Proceed with 1.0 g of L-Valine, prepare the test solution according to Method 2, and perform the test using Apparatus B (not more than 2 ppm).

(7) Other amino acids—Dissolve 0.10 g of L-Valine in 25 mL of water, and use this solution as the sample solution. Pipet 1 mL of the sample solution, and add water to make exactly 50 mL. Pipet 5 mL of this solution, add water to make exactly 20 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under the Thin-layer Chromatography. Spot 5 μL each of the sample solution and the standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of 1-butanol, water and acetic acid (100 (3:1:1)) to a distance of about 10 cm, and dry the plate at 80°C for 30 minutes. Spray evenly a solution of ninhydrin in acetone (1 in 50) on the plate, and heat at 80°C for 5 minutes: the spots other than the principal spot from the sample solution are not more intense than the spot from the standard solution.

Loss on drying Not more than 0.30% (1 g, 105°C, 3 hours).

Residue on ignition Not more than 0.10% (1 g).

Assay Weigh accurately about 0.12 g of L-Valine, previously dried, and dissolve in 3 mL of formic acid, add 50 mL of acetic acid (100), and titrate with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 11.715 mg of C₃H₅NO₂

Containers and storage Containers—Tight containers.

Vancomycin Hydrochloride
塩酸バンコマイシン

\[
\text{C}_{27}\text{H}_{37}\text{Cl}_{2}\text{N}_{2}\text{O}_{24}\cdot\text{HCl} : 1485.71
\]

\[
(1\text{S},2\text{R},1\text{S},1\text{R},1\text{S},2\text{S},4\text{R},5\text{R},6\text{R},4\text{R})\cdot\text{HCl} - \text{O-(3-Amino-}
2,3,6-trideoxy-3-C-methyl-\alpha-L-lyxo-hexopyranosyl)-D-
\text{glucopyranosyloxy)-2-carbamoyl(methyl-5,15-dichloro-}
2,18,32,35,37-pentahydroxy-19-(2R)-4-methyl-2-
(methylamino)pentanoylaminol)-20,23,26,42,44-pentaaxo-
7,13-dioxo-21,24,27,41,43-pentaaazacyclo-
[26.14.2.2\text{3}.6.2\text{14}.17.1\text{8}.12.1\text{39}.35.0\text{10}.25.0\text{34}.29]pentaconta-
3,5,8,10,12(50),14,16,29,31,33(49),34,36,38,45,47-
pentadecaene-40-carboxylic acid monohydrochloride \[1404-93-9]\]

Vancomycin Hydrochloride conforms to the requirements of Vancomycin Hydrochloride in the Requirements for Antibiotic Products of Japan.

Description Vancomycin Hydrochloride occurs as a white powder.
It is freely soluble in water, very slightly soluble in ethanol (95), and practically insoluble in diethyl ether.

Vasopressin Injection

\text{Vasopressin Injection}

Vasopressin Injection is an aqueous solution for injection. It contains synthetic vasopressin or the pressor principle, vasopressin, obtained from the posterior lobe of the pituitary of healthy cattle and pigs, from which the majority of the oxytocic principle, oxytocin, has been removed.

It contains not less than 85% and not more than 120% of the labeled vasopressin Units.

Method of preparation Prepare as directed under Injections, with vasopressin prepared by synthesis or obtained from the posterior lobe of the pituitary.