gredients.

Description Phenolsulfonphthalein Injection is a clear, orange-yellow to red liquid.

Identification To 1 mL of Phenolsulfonphthalein Injection add 2 to 3 drops of sodium hydroxide TS, and proceed as directed in the Identification (1) under Phenolsulfonphthalein.

pH 6.0 - 7.6

Sensitivity To 1.0 mL of Phenolsulfonphthalein Injection add 5 mL of water. To 0.20 mL of this solution add 50 mL of freshly boiled and cooled water and 0.40 mL of 0.01 mol/L sodium hydroxide VS: a deep red-purple color develops, and it changes to light yellow on the addition of 0.40 mL of 0.005 mol/L sulfuric acid VS.

Assay Pipet 5 mL of Phenolsulfonphthalein Injection, and add a solution of anhydrous sodium carbonate (1 in 100) to make exactly 250 mL. Pipet 5 mL of this solution, add a solution of anhydrous sodium carbonate (1 in 100) to make exactly 200 mL, and use this solution as the sample solution. Separately, weigh accurately about 0.03 g of phenolsulfonphthalein for assay, previously dried in a desiccator (silica gel) for 4 hours, and dissolve in a solution of anhydrous sodium carbonate (1 in 100) to make exactly 250 mL. Pipet 5 mL of this solution, add a solution of anhydrous sodium carbonate (1 in 100) to make exactly 200 mL, and use this solution as the standard solution. Determine the absorbances, $A_{\rm T}$ and $A_{\rm S}$, of the sample solution and the standard solution at 559 nm as directed under the Ultraviolet-visible Spectrophotometry.

Amount (mg) of phenolsulfonphthalein ($C_{19}H_{14}O_5S$) = amount (mg) of phenolsulfonphthalein for assay $\times \frac{A_T}{A_S}$

Containers and storage Containers—Hermetic containers.

L-Phenylalanine

L-フェニルアラニン

C₉H₁₁NO₂: 165.19

(2S)-2-Amino-3-phenylpropanoic acid [63-91-2]

L-Phenylalanine, when dried, contains not less than 98.5% of C₉H₁₁NO₂.

Description L-Phenylalanine occurs as white crystals or crystalline powder. It is odorless or has a faint characteristic odor, and has a slightly bitter taste.

It is freely soluble in formic acid, sparingly soluble in water, and practically insoluble in ethanol (95).

It dissolves in dilute hydrochloric acid.

Identification Determine the infrared absorption spectrum of L-Phenylalanine, previously dried, as directed in the potassium bromide disk method under the Infrared Spec-

trophotometry, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Optical rotation $[\alpha]_D^{20}$: $-33.0 - 35.5^{\circ}$ (after drying, 0.5 g, water, 25 mL, 100 mm).

pH Dissolve 0.20 g of L-Phenylalanine in 20 mL of water: the pH of this solution is between 5.3 and 6.3.

Purity (1) Clarity and color of solution—Dissolve 0.5 g of L-Phenylalanine in 10 mL of 1 mol/L hydrochloric acid TS: the solution is clear and colorless.

- (2) Chloride—Perform the test with 0.5 g of L-Phenylalanine. Prepare the control solution with 0.30 mL of 0.01 mol/L hydrochloric acid VS (not more than 0.021%).
- (3) Sulfate—Perform the test with 0.6 g of L-Phenylalanine. Prepare the control solution with 0.35 mL of 0.005 mol/L sulfuric acid VS (not more than 0.028%).
- (4) Ammonium—Perform the test with 0.25 g of L-Phenylalanine. Prepare the control solution with 5.0 mL of Standard Ammonium Solution (not more than 0.02%).
- (5) Heavy metals—Dissolve 1.0 g of L-Phenylalanine in 40 mL of water and 2 mL of dilute acetic acid by warming, cool, and add water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution as follows: to 2.0 mL of Standard Lead Solution add 2 mL of dilute acetic acid and water to make 50 mL (not more than 20 ppm).
- (6) Arsenic—Dissolve 1.0 g of L-Phenylalanine in 5 mL of dilute hydrochloric acid and 15 mL of water, and perform the test with this solution as the test solution using Apparatus B (not more than 2 ppm).
- (7) Other amino acids—Dissolve 0.10 g of L-Phenylalanine in 25 mL of water, and use this solution as the sample solution. Pipet 1 mL of the sample solution, and add water to make exactly 50 mL. Pipet 5 mL of this solution, add water to make exactly 20 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under the Thin-layer Chromatography. Spot 5 μ L each of the sample solution and the standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of 1-butanol, water and acetic acid (100) (3:1:1) to a distance of about 10 cm, and dry the plate at 80°C for 30 minutes. Spray evenly a solution of ninhydrin in acetone (1 in 50) on the plate, and heat at 80°C for 5 minutes: the spots other than the principal spot from the sample solution are not more intense than the spot from the standard solution.

Loss on drying Not more than 0.30% (1 g, 105°C, 3 hours).

Residue on ignition Not more than 0.10% (1 g).

Assay Weigh accurately about 0.17 g of L-Phenylalanine, previously dried, and dissolve in 3 mL of formic acid, add 50 mL of acetic acid (100), and titrate with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 16.519 mg of $C_9H_{11}NO_2$

Containers and storage Containers—Tight containers.