System repeatability: When the test is repeated 6 times with $5 \mu L$ of the standard solution under the above operating conditions, the relative standard deviation of the ratios of the peak area of lidocaine to that of the internal standard is not more than 1.0%.

Containers and storage Containers—Hermetic containers.

Lincomycin Hydrochloride

塩酸リンコマイシン

 $C_{18}H_{34}N_2O_6S.HCl.H_2O: 461.01$ Methyl 6,8-dideoxy-6-[(2S,4R)-1-methyl-4-propylpyrrolidine-2-carboxamido]-1-thio-D-*erythro-* α -D-*galacto*-octopyranoside monohydrochloride monohydrate [7179-49-9]

Lincomycin Hydrochloride conforms to the requirements of Lincomycin Hydrochloride in the Requirements for Antibiotic Products of Japan.

Description Lincomycin Hydrochloride occurs as white crystals or crystalline powder. It has a bitter taste.

It is very soluble in water, freely soluble in methanol and in ethanol (95), and practically insoluble in diethyl ether.

Liothyronine Sodium

リオチロニンナトリウム

C₁₅H₁₁I₃NNaO₄: 672.96

Monosodium *O*-(4-hydroxy-3-iodophenyl)-3,5-diiodo-L-tyrosinate [55-06-1]

Liothyronine Sodium contains not less than 95.0% of $C_{15}H_{11}I_3NNaO_4$, calculated on the dried basis.

Description Liothyronine Sodium occurs as a white to light brown powder. It is odorless.

It is slightly soluble in ethanol (95), and practically insoluble in water and in diethyl ether.

It dissolves in sodium hydroxide TS and in ammonia TS.

Identification (1) To 5 mL of a solution of Liothyronine Sodium in ethanol (95) (1 in 1000) add 1 mL of ninhydrin TS, and warm in a water bath for 5 minutes: a purple color develops.

- (2) Heat 0.02 g of Liothyronine Sodium with a few drops of sulfuric acid over a flame: a purple gas is evolved.
- (3) Determine the absorption spectrum of a solution of Liothyronine Sodium in ethanol (95) (1 in 10,000) as directed under the Ultraviolet-visible Spectrophotometry, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.
- (4) Ignite 0.02 g of Liothyronine Sodium until thoroughly charred. After cooling, add 5 mL of water to the residue, shake, and filter: the filtrate responds to the Qualitative Tests (1) for sodium salt.

Optical rotation $[\alpha]_D^{20}$: $+18 - +22^{\circ}$ (0.2 g, calculated on the dried basis, a mixture of ethanol (95) and 1 mol/L hydrochloric acid TS (4:1), 10 mL, 100 mm).

Purity (1) Soluble halide—To 0.010 g of Liothyronine Sodium add 10 mL of water and 1 drop of dilute nitric acid, shake for 5 minutes, and filter. Add water to the filtrate to make 10 mL, and mix with 3 drops of silver nitrate TS: the solution shows no more turbidity than the following control solution.

Control solution: To 0.35 mL of 0.01 mol/L hydrochloric acid VS add 1 drop of dilute nitric acid and water to make 10 mL, and add 3 drops of silver nitrate TS.

(2) Iodine and iodide—Dissolve 0.10 g of Liothyronine Sodium in 10 mL of dilute sodium hydroxide TS and 15 mL of water, add 5 mL of dilute sulfuric acid, and allow to stand for 10 minutes with occasional shaking. Filter the mixture into a Nessler tube, add 10 mL of chloroform and 3 drops of a solution of potassium iodate (1 in 100) to the filtrate, mix for 30 seconds, and allow to stand: the chloroform layer has no more color than the following control solution.

Control solution: Weigh exactly 0.111 g of potassium iodide, and dissolve in water to make 1000 mL. Pipet 1 mL of this solution, add 10 mL of dilute hydroxide TS, 14 mL of water and 5 mL of dilute sulfuric acid, and mix. Filter the mixture into a Nessler tube, and perform the test with the filtrate in the same manner as for the sample.

(3) Related substances—Dissolve 0.15 g of Liothyronine Sodium in 5 mL of diluted ammonia TS (1 in 3), and use this solution as the sample solution. Pipet 1 mL of this solution, add diluted ammonia TS (1 in 3) to make exactly 50 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under the Thin-layer Chromatography. Spot $1 \mu L$ each of the sample solution and the standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of tbutanol, t-amyl alcohol, water, ammonia solution (28) and 2-butanone (59:32:17:15:7) to a distance of about 12 cm, and air-dry the plate. Spray evenly a solution of 0.3 g of ninhydrin in 100 mL of a mixture of 1-butanol and acetic acid (100) (97:3) on the plate, and dry the plate at 100°C for 3 minutes: the spots other than the principal spot from the sample solution are not more intense than the spot from the standard solution.

Loss on drying Not more than 4.0% (0.2 g, 105°C, 2 hours).

Assay Weigh accurately about 0.025 g of Liothyronine Sodium, and proceed as directed under the Oxygen Flask Combustion Method, using a mixture of 10 mL of a solution of