Dried Aluminum Hydroxide Gel

乾燥水酸化アルミニウムゲル

Dried Aluminum Hydroxide Gel contains not less than 50.0% of aluminum oxide (Al₂O₃: 101.96).

Description Dried Aluminum Hydroxide Gel occurs as a white, amorphous powder. It is odorless and tasteless.

It is practically insoluble in water, in ethanol (95) and in diethyl ether.

Most of it dissolves in dilute hydrochloric acid and in sodium hydroxide TS.

Identification To 0.2 g of Dried Aluminum Hydroxide Gel add 20 mL of dilute hydrochloric acid, warm, and centrifuge: the supernatant liquid responds to the Qualitative Tests for aluminum salt.

- **Purity** (1) Acidity or alkalinity—To 1.0 g of Dried Aluminum Hydroxide Gel add 25 mL of water, shake well, and centrifuge: the supernatant liquid is neutral.
- (2) Chloride—To 1.0 g of Dried Aluminum Hydroxide Gel add 30 mL of dilute nitric acid, heat gently to boil while shaking, cool, add water to make 100 mL, and centrifuge. To 5 mL of the supernatant liquid add 6 mL of dilute nitric acid and water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution with 0.40 mL of 0.01 mol/L hydrochloric acid VS (not more than 0.284%).
- (3) Sulfate—To 1.0 g of Dried Aluminum Hydroxide Gel add 15 mL of dilute hydrochloric acid, heat gently to boil while shaking, cool, add water to make 250 mL, and centrifuge. To 25 mL of the supernatant liquid add 1 mL of dilute hydrochloric acid and water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution with 1.0 mL of 0.005 mol/L sulfuric acid VS (not more than 0.480%).
- (4) Nitrate—To 0.10 g of Dried Aluminum Hydroxide Gel add 5 mL of water, then carefully add 5 mL of sulfuric acid, shake well to dissolve, and cool. Superimpose the solution on 2 mL of iron (II) sulfate TS: no brown-colored ring is produced at the zone of contact.
- (5) Heavy metals—Dissolve 2.0 g of Dried Aluminum Hydroxide Gel in 10 mL of dilute hydrochloric acid by heating, filter if necessary, and add water to make 50 mL. Perform the test with this solution as the test solution. Prepare the control solution as follows: evaporate 10 mL of dilute hydrochloric acid to dryness, and add 2.0 mL of Standard Lead Solution, 2 mL of dilute acetic acid and water to make 50 mL (not more than 10 ppm).
- (6) Arsenic—To 0.8 g of Dried Aluminum Hydroxide Gel add 10 mL of dilute sulfuric acid, heat gently to boil while shaking, cool, and filter. Take 5 mL of the filtrate, use this solution as the test solution, and perform the test using Apparatus B (not more than 5 ppm).

Acid-consuming capacity Weigh accurately about 0.2 g of Dried Aluminum Hydroxide Gel, and transfer to a glass-stoppered flask. Add exactly $100 \, \text{mL}$ of $0.1 \, \text{mol/L}$ hydrochloric acid VS, stopper the flask, shake at $37 \pm 2^{\circ}\text{C}$ for 1 hour, and filter. Measure exactly $50 \, \text{mL}$ of the filtrate, and titrate while thoroughly stirring, the excess hydrochloric acid with $0.1 \, \text{mol/L}$ sodium hydroxide VS until the pH of

the solution becomes to 3.5. The volume of 0.1 mol/L hydrochloric acid VS consumed is not less than 250 mL per g of Dried Aluminum Hydroxide Gel.

Assay Weigh accurately about 2 g of Dried Aluminum Hydroxide Gel, add 15 mL of hydrochloric acid, heat on a water bath with shaking for 30 minutes, cool, and add water to make exactly 500 mL. Pipet 20 mL of this solution, add exactly 30 mL of 0.05 mol/L disodium dihydrogen ethylenediamine tetraacetate VS and 20 mL of acetic acid (31)-ammonium acetate buffer solution, pH 4.8, boil for 5 minutes, and cool. Add 55 mL of ethanol (95), and titrate with 0.05 mol/L zinc acetate VS until the color of the solution changes from light dark green to light red. (indicator: 2 mL of dithizone TS). Perform a blank determination, and make any necessary correction.

Each mL of 0.05 mol/L disodium dihydrogen ethylenediamine tetraacetate VS = 2.5490 mg of Al₂O₃

Containers and storage Containers—Tight containers.

Dried Aluminum Hydroxide Gel Fine Granules

乾燥水酸化アルミニウムゲル細粒

Dried Aluminum Hydroxide Gel Fine Granules contain not less than 47.0% of aluminum oxide (Al₂O₃: 101.96).

Method of preparation Prepare with Dried Aluminum Hydroxide Gel as directed under Powders.

Identification To 0.2 g of Dried Aluminum Hydroxide Gel Fine Granules add 20 mL of dilute hydrochloric acid, warm and centrifuge: the supernatant liquid responds to the Qualitative Tests for aluminum salt.

Acid-consuming capacity Proceed as directed for Acid-consuming capacity under Dried Aluminum Hydroxide Gel: the volume of 0.1 mol/L hydrochloric acid VS consumed is not less than 235 mL per g of Dried Aluminum Hydroxide Gel Fine Granules.

Assay Proceed as directed in the Assay under Dried Aluminum Hydroxide Gel.

Each mL of 0.05 mol/L disodium dihydrogen ethylenediamine tetraacetate VS = 2.5490 mg of Al₂O₃

Containers and storage Containers—Tight containers.

Natural Aluminum Silicate

天然ケイ酸アルミニウム

Description Natural Aluminum Silicate occurs as a white or slightly colored powder. It is odorless and tasteless.

It is practically insoluble in water, in ethanol (95) and in diethyl ether.

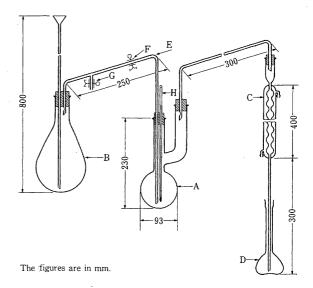
Natural Aluminum Silicate (1 g) dissolves when heated in 20 mL of a solution of sodium hydroxide (1 in 5), with some decomposition, leaving a large amount of insoluble substance

Identification (1) To 0.5 g of Natural Aluminum Silicate add 3 mL of diluted sulfuric acid (1 in 3), heat until white fumes evolve, cool, add 20 mL of water, and filter. Render the filtrate slightly acid with ammonia TS: the solution responds to the Qualitative Tests for aluminum salt.

(2) Prepare a bead by fusing ammonium sodium hydrogenphosphate tetrahydrate on a platinum loop. Place the bead in contact with Natural Aluminum Silicate, and fuse again: an infusible material appears in the bead, producing, upon cooling, an opaque bead with a web-like structure.

Purity (1) Acidity or alkalinity—Shake 5.0 g of Natural Aluminum Silicate with 100 mL of water, and centrifuge: the supernatant liquid so obtained is neutral.

(2) Chloride—To 5.0 g of Natural Aluminum Silicate add 100 mL of water, boil gently for 15 minutes while shaking, then cool, add water to restore the original volume, and centrifuge. To 10 mL of the supernatant liquid add 6 mL of dilute nitric acid, dilute to 50 mL with water, and perform the test using this solution as the test solution. Prepare the control solution with 0.30 mL of 0.01 mol/L hydrochloric acid VS (not more than 0.021%).


(3) Sulfate—To the residue obtained in (6) add 3 mL of dilute hydrochloric acid, heat on a water bath for 10 minutes, dilute to 50 mL with water, and filter. To 2.0 mL of the filtrate add 1 mL of dilute hydrochloric acid and water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution with 1.0 mL of 0.005 mol/L sulfuric acid VS (not more than 0.480%).

(4) Heavy metals—To 1.5 g of Natural Aluminum Silicate add 50 mL of water and 5 mL of hydrochloric acid, boil gently for 20 minutes while shaking, then cool, centrifuge, remove the supernatant liquid, wash the residue with two 10-mL portions of water, centrifuging each time, combine these washings with the filtrate, and add ammonia solution (28) dropwise, until a precipitate just appears. Add dropwise dilute hydrochloric acid with vigorous shaking and redissolve the precipitate. Heat the mixture with 0.45 g of hydroxylammonium chloride, cool, and add 0.45 g of sodium acetate trihydrate, 6 mL of dilute acetic acid and water to make 150 mL. Perform the test, using 50 mL of this solution as the test solution. Prepare the control solution with 2.0 mL of Standard Lead Solution, 0.15 g of hydroxylammonium chloride, 0.15 g of sodium acetate trihydrate, 2 mL of dilute acetic acid and water to make 50 mL (not more than 40 ppm).

(5) Arsenic—To 1.0 g of Natural Aluminum Silicate, add 5 mL of dilute hydrochloric acid, heat gently to boil while shaking well, cool rapidly, and centrifuge. Mix the residue with 5 mL of dilute hydrochloric acid with shaking, centrifuge, then add 10 mL of water to the residue, and repeat the extraction in the same manner. Concentrate the combined extracts on a water bath to 5 mL. Use this solution as the test solution, and perform the test using Apparatus B (not more than 2 ppm).

(6) Soluble salts—Evaporate 50 mL of the supernatant liquid obtained in (1) on a water bath to dryness, and ignite the residue at 700°C for 2 hours: the mass of the ignited residue is not more than 0.04 g.

(7) Fluoride—(i) Apparatus: Use a hard glass apparatus as illustrated in the figure. Ground-glass joints may be used.

A: Distilling flask of about 300-mL capacity.

B: Steam generator of about 1000-mL capacity, containing a few boiling tips to prevent bumping

C: Condenser

D: Receiver: 200-mL volumetric flask

E: Steam-introducing tube having an internal diameter of about 8 mm

F, G: Rubber tube with a clamp

H: Thermometer

(ii) Procedure: Transfer 5.0 g of Natural Aluminum Silicate to the distilling flask A with the aid of 20 mL of water, add about 1 g of glass wool and 50 mL of diluted purified sulfuric acid (1 in 2), and connect A to the distillation apparatus, previously washed with steam streamed through the steam introducing tube E. Connect the condenser C with the receiver D containing 10 mL of 0.01 mol/L sodium hydroxide VS and 10 mL of water so that the lower end of C is immersed in the solution. Heat A gradually until the temperature of the solution in A reaches 130°C, then open the rubber tube F, close the rubber tube G, boil water in the steam generator B vigorously, and introduce the generated steam into F. Simultaneously, heat A, and maintain the temperature of the solution in A between 135°C and 145°C. Adjust the distilling rate to about 10 mL per minute. Collect about 170 mL of the distillate, then stop the distillation. wash C with a small quantity of water, combine the washings with the distillate, add water to make exactly 200 mL, and use this solution as the test solution. Perform the test with the test solution as directed in the procedure of determination for fluoride under the Oxygen Flask Combustion Method. No corrective solution is used in this procedure.

Amount (mg) of fluoride (F: 19.00) in the test solution

= amount (mg) of fluoride in 5 mL of the standard solution

$$\times \frac{A_{\rm T}}{A_{\rm S}} \times \frac{200}{V}$$

The content of fluoride (F) is not more than 0.01%.

Loss on drying Not more than 20.0% (1 g, 105°C, 3 hours).

Adsorptive power To 0.10 g of Natural Aluminum Silicate add 20 mL of a solution of methylene blue trihydrate (3 in 2000), shake for 15 minutes, allow to stand for 5 hours at 37 ± 2 °C, and centrifuge. Dilute 1.0 mL of the supernatant liquid with water to 200 mL. Place 50 mL of the solution in a Nessler tube and observe horizontally or vertically against a white background: the color of the solution is not deeper than that of the following control solution.

Control solution: Dilute 1.0 mL of a solution of methylene blue trihydrate (3 in 2000) with water to 400 mL, and use 50 mL of this solution.

Containers and storage Containers—Well-closed containers.

Synthetic Aluminum Silicate

合成ケイ酸アルミニウム

Description Synthetic Aluminum Silicate occurs as a white powder. It is odorless and tasteless.

It is practically insoluble in water, in ethanol (95) and in diethyl ether.

Synthetic Aluminum Silicate (1 g) dissolves when heated in 20 mL of a solution of sodium hydroxide (1 in 5), leaving a small amount of insoluble substance.

- **Identification** (1) To 0.5 g of Synthetic Aluminum Silicate add 3 mL of diluted sulfuric acid (1 in 3), heat until white fumes evolve, cool, add 20 mL of water, and filter. Render the filtrate slightly acid with ammonia TS: the solution responds to the Qualitative Tests for aluminum salt.
- (2) Prepare a bead by fusing ammonium sodium hydrogenphosphate tetrahydrate on a platinum loop. Place the bead in contact with Synthetic Aluminum Silicate, and fuse again: an infusible material appears in the bead, producing, upon cooling, an opaque bead with a web-like structure.
- **Purity** (1) Acidity or alkalinity—Shake 1.0 g of Synthetic Aluminum Silicate with 20 mL of water, and centrifuge: the supernatant liquid so obtained is neutral.
- (2) Chloride—To 5.0 g of Synthetic Aluminum Silicate add 100 mL of water, boil gently for 15 minutes while shaking, then cool, add water to restore the original volume, and centrifuge. To 10 mL of the supernatant liquid add 6 mL of dilute nitric acid and water to make 50 mL, and perform the test using this solution as the test solution. Prepare the control solution with 0.30 mL of 0.01 mol/L hydrochloric acid VS (not more than 0.021%).
- (3) Sulfate—To 2.0 mL of the supernatant liquid obtained in (2) add 1 mL of dilute hydrochloric acid and water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution with 1.0 mL of 0.005 mol/L sulfuric acid VS (not more than 0.480%).
- (4) Heavy metals—To 3.0 g of Synthetic Aluminum Silicate add 50 mL of water and 5 mL of hydrochloric acid, boil gently for 20 minutes while shaking, then after cooling, centrifuge, remove the supernatant liquid, wash the precipitate with two 10-mL portions of water, centrifuging each time,

combine these washings with the filtrate, and add ammonia solution (28) dropwise until a precipitate just appears. Add dropwise dilute hydrochloric acid with vigorous shaking to redissolve the precipitate. Heat the solution with 0.45 g of hydroxylammonium chloride, and after cooling, add 0.45 g of sodium acetate trihydrate, 6 mL of dilute acetic acid and water to make 150 mL. Perform the test with 50 mL of this solution as the test solution. Prepare the control solution with 3.0 mL of Standard Lead Solution, 0.15 g of hydroxylammonium chloride, 0.15 g of sodium acetate trihydrate, 2 mL of dilute acetic acid and water to make 50 mL (not more than 30 ppm).

(5) Arsenic—To 1.0 g of Synthetic Aluminum Silicate add 10 mL of dilute hydrochloric acid, heat gently to boiling while shaking well, cool rapidly, and centrifuge. Mix the residue with 5 mL of dilute hydrochloric acid with shaking, centrifuge, then add 10 mL of water to the residue, and repeat the extraction in the same manner. Concentrate the combined extracts on a water bath to 5 mL. Use this solution as the test solution, and perform the test using Apparatus B (not more than 2 ppm).

Loss on drying Not more than 20.0% (1 g, 105°C, 3 hours).

Acid-consuming capacity Weigh accurately about 1 g of Synthetic Aluminum Silicate, transfer to a glass-stoppered flask, add 200 mL of 0.1 mol/L hydrochloric acid VS, exactly measured, stopper the flask, and shake at 37 \pm 2°C for 1 hour. Filter, pipet 50 mL of the filtrate, and titrate by stirring well the excess hydrochloric acid with 0.1 mol/L sodium hydroxide VS until the pH of the solution changes to 3.5. The volume of 0.1 mol/L hydrochloric acid VS consumed is not less than 50.0 mL per g of Synthetic Aluminum Silicate.

Containers and storage Containers—Well-closed containers.

Amantadine Hydrochloride

塩酸アマンタジン

 $C_{10}H_{17}N.HCl:$ 187.71 Tricyclo[3.3.1.1^{3,7}]dec-1-ylamine monohydrochloride [665-66-7]

Amantadine Hydrochloride, when dried, contains not less than 99.0% of $C_{10}H_{17}N.HCl.$

Description Amantadine Hydrochloride occurs as a white, crystalline powder. It is odorless, and has a bitter taste.

It is very soluble in formic acid, freely soluble in water, in methanol and in ethanol (95), and practically insoluble in diethyl ether.

Identification (1) To 0.1 g of Amantadine Hydrochloride add 1 mL of pyridine and 0.1 mL of acetic anhydride,