Oxazolam, when dried, contains not less than 99.0% of  $C_{18}H_{17}ClN_2O_2$ .

**Description** Oxazolam occurs as white crystals or crystalline powder.

It is odorless and tasteless.

It is freely soluble in acetic acid (100), soluble in 1,4-dioxane and in dichloromethane, slightly soluble in ethanol (95) and in diethyl ether, and practically insoluble in water.

It dissolves in dilute hydrochloric acid.

It gradually changes in color by light.

Melting point: about 187°C (with decomposition).

**Identification** (1) Dissolve 0.01 g of Oxazolam in 10 mL of ethanol (95) by heating, and add 1 drop of hydrochloric acid: a light yellow color develops, and the solution shows a yellow-green fluorescence under ultraviolet light (main wavelength: 365 nm). Add 1 mL of sodium hydroxide TS to this solution: the color and fluorescence of this solution disappear immediately.

- (2) Dissolve 0.01 g of Oxazolam in 5 mL of dilute hydrochloric acid by heating in a water bath for 10 minutes. After cooling, 1 mL of this solution responds to the Qualitative Tests for primary aromatic amines.
- (3) Place 2 g of Oxazolam in a 200-mL flask, add 50 mL of ethanol (95) and 25 mL of 6 mol/L hydrochloric acid TS, and boil under a reflux condenser for 5 hours. After cooling, neutralize with a solution of sodium hydroxide (1 in 4), and extract with 30 mL of dichloromethane. Dehydrate with 3 g of anhydrous sodium sulfate, filter, and evaporate the dichloromethane of the filtrate. Dissolve the residue in 20 mL of methanol by heating on a water bath, and cool immediately in an ice bath. Collect the crystals, and dry in vacuum at 60°C for 1 hour: the crystals melt between 96°C and 100°C.
- (4) Determine the absorption spectrum of a solution of Oxazolam in ethanol (95) (1 in 100,000) as directed under the Ultraviolet-visible Spectrophotometry, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.
- (5) Proceed with Oxazolam as directed under the Flame Coloration Test (2), and perform the test: a green color appears.

**Absorbance**  $E_{1,\text{cm}}^{1,\text{sw}}$  (246 nm): 410 – 430 (after drying, 1 mg, ethanol (95), 100 mL).

- Purity (1) Chloride—To 1.0 g of Oxazolam add 50 mL of water, allow to stand for 1 hour with occasional shaking, and filter. To 25 mL of this filtrate add 6 mL of dilute nitric acid and water to make 50 mL, and perform the test using this solution as the test solution. Prepare the control solution with 0.20 mL of 0.01 mol/L hydrochloric acid VS (not more than 0.014%).
- (2) Heavy metals—Proceed with 1.0 g of Oxazolam according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).
- (3) Arsenic—Place 1.0 g of Oxazolam in a Kjeldahl flask, add 5 mL of sulfuric acid and 5 mL of nitric acid, and heat gently. Repeat the addition of 2 to 3 mL of nitric acid at times, and continue to heat until a colorless to light yellow solution is obtained. After cooling, add 15 mL of saturated ammonium oxalate monohydrate solution, heat the solution until dense white fumes are evolved, and evaporate to

a volume of 2 to 3 mL. After cooling, dilute with water to 10 mL, and perform the test with this solution as the test solution using Apparatus B (not more than 2 ppm).

(4) Related substances—Dissolve 0.05 g of Oxazolam in 10 mL of dichloromethane, and use this solution as the sample solution. Pipet 1 mL of this solution, add dichloromethane to make exactly 200 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under the Thin-layer Chromatography. Spot  $10 \,\mu\text{L}$  each of the sample solution and the standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Immediately air-dry, develop the plate with a mixture of toluene and acetone (8:1) to a distance of about 10 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the spots other than the principal spot from the sample solution are not more intense than the spot from the standard solution.

Loss on drying Not more than 0.5% (1 g, 105°C, 3 hours).

Residue on ignition Not more than 0.10% (1 g).

Assay Weigh accurately about 0.65 g of Oxazolam, previously dried, dissolve in 100 mL of a mixture of acetic acid (100) and 1,4-dioxane (1:1). Titrate with 0.1 mol/L perchloric acid VS until the color of the solution changes from purple through blue to blue-green (indicator: 2 drops of crystal violet TS). Perform a blank determination, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 32.880 mg of  $C_{18}H_{17}ClN_2O_2$ 

**Containers and storage** Containers—Tight containers. Storage—Light-resistant.

## Oxethazaine

## Oxetacaine

オキセサゼイン

 $C_{28}H_{41}N_3O_3$ : 467.64 2,2'-(2-Hydroxyethylimino)bis[N-(1,1-dimethyl-2-phenylethyl)-N-methylacetamide] [126-27-2]

Oxethazaine, when dried, contains not less than 98.5% of  $C_{28}H_{41}N_3O_3$ .

**Description** Oxethazaine occurs as a white to pale yellowish white, crystalline powder.

**Identification** (1) Determine the absorption spectrum of a solution of Oxethazaine in ethanol (95) (1 in 2500) as directed under the Ultraviolet-visible Spectrophotometry, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Oxethazaine as directed in the potassium bromide disk method under the Infrared Spectrophotometry, and compare the spectrum with the Reference Spectrum: both spectra exhibits similar intensities of absorption at the same wave numbers.

Melting point 101 - 104°C

- **Purity** (1) Chloride—Dissolve 1.0 g of Oxethazaine in 20 mL of ethanol (95), add 6 mL of dilute nitric acid and water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution with 0.30 mL of 0.01 mol/L hydrochloric acid VS, 20 mL of ethanol (95), 6 mL of dilute nitric acid and water to make 50 mL (not more than 0.011%).
- (2) Heavy metals—Proceed with 2.0 g of Oxethazaine according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).
- (3) Related substances—Dissolve 0.40 g of Oxethazaine in 10 mL of ethanol (95), and use this solution as the sample solution. Pipet 1 mL of the sample solution, add ethanol (95) to make exactly 100 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under the Thin-layer Chromatography. Spot  $10 \,\mu\text{L}$  each of the sample solution and the standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of isopropylether, tetrahydrofuran, methanol and ammonia solution (28) (24:10:5:1) to a distance of about 10 cm, and airdry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the spots other than the principal spot from the sample solution are not more intense than the spot from the standard solution.
- (4) 2-Aminoethanol—To 1.0 g of Oxethazaine add methanol to make exactly 10 mL, then add 0.1 mL of a solution of 1-fluoro-2,4-dinitrobenzene in methanol (1 in 25), shake well, and heat at 60°C for 20 minutes: the solution has no more color than the following control solution.

Control solution: To 0.10 g of 2-aminoethanol add methanol to make exactly 200 mL, pipet 1 mL of this solution, and add methanol to make exactly 10 mL. Proceed as directed above.

Loss on drying Not more than 0.5% (1 g, in vacuum, 60°C, 3 hours).

Residue on ignition Not more than 0.10% (1 g).

Assay Weigh accurately about 0.9 g of Oxethazaine, previously dried, dissolve in 50 mL of acetic acid (100), and titrate with 0.1 mol/L perchloric acid VS (indicator: 2 drops of crystal violet TS). Perform a blank determination, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 46.77 mg of  $C_{28}H_{41}N_3O_3$ 

Containers and storage Containers—Tight containers.

## Oxprenolol Hydrochloride

塩酸オクスプレノロール

C<sub>15</sub>H<sub>23</sub>NO<sub>3</sub>.HCl: 301.81

(RS)-1-[2-(Allyloxy)phenoxy]-3-isopropylaminopropan-2-ol monohydrochloride [6452-73-9]

Oxprenolol Hydrochloride, when dried, contains not less than 98.5% of  $C_{15}H_{23}NO_3$ .HCl.

**Description** Oxprenolol Hydrochloride occurs as a white, crystalline powder.

It is very soluble in water, freely soluble in ethanol (95) and in acetic acid (100), slightly soluble in acetic anhydride, and practically insoluble in diethyl ether.

**Identification** (1) To 2 mL of a solution of Oxprenolol Hydrochloride (1 in 100) add 1 drop of copper (II) sulfate TS and 2 mL of sodium hydroxide TS: a blue-purple color develops. To this solution add 1 mL of diethyl ether, shake well, and allow to stand: a red-purple color develops in the diethyl ether layer, and a blue-purple color develops in the water layer.

- (2) To 3 mL of a solution of Oxprenolol Hydrochloride (1 in 150) add 3 drops of Reinecke salt TS: a light red precipitate is formed.
- (3) Determine the infrared absorption spectrum of Oxprenolol Hydrochloride, previously dried, as directed in the potassium chloride disk method under the Infrared Spectrophotometry, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.
- (4) A solution of Oxprenolol Hydrochloride (1 in 50) responds to the Qualitative Tests for chloride.

**pH** Dissolve 1.0 g of Oxprenolol Hydrochloride in 10 mL of water: the pH of this solution is between 4.5 and 6.0.

Melting point 107 - 110°C

- **Purity** (1) Clarity and color of solution—Dissolve 1.0 g of Oxprenolol Hydrochloride in 10 mL of water: the solution is clear and colorless.
- (2) Heavy metals—Proceed with 2.0 g of Oxprenolol Hydrochloride according to Method 4, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).
- (3) Arsenic—Prepare the test solution with 1.0 g of Oxprenolol Hydrochloride according to Method 3, and perform the test using Apparatus B (not more than 2 ppm).
- (4) Related substances—Dissolve 0.25 g of Oxprenolol Hydrochloride in 10 mL of water, and use this solution as the sample solution. Pipet 4 mL of the sample solution, and add water to make exactly 100 mL. Pipet 5 mL of this solution, add water to make exactly 100 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under the Thin-layer Chromatography. Spot 10 µL each of the sample solution and the standard so-