Acid-insoluble ash Not more than 2.0%. **Extract content** Dilute ethanol-soluble extract: not less than 30.0%. ## **Powdered Senega** Senegae Radix Pulverata セネガ末 Powdered Senega is the powder of Senega. **Description** Powdered Senega occurs as a light brown powder, and has a characteristic odor resembling the aroma of methyl salicylate; taste, sweet at first, but later acrid. Under a microscope, Powdered Senega reveals fragments of pitted vessels, reticulate vessels and tracheids; fragments of xylem fibers with oblique pits; fragments of xylem parenchyma cells with simple pits; fragments of phloem parenchyma containing oily droplets; fragments of exodermis often composed of cells suberized and divided into daughter cells; oily droplets stained red by sudan III TS. The parenchyma cells of Powdered Senega do not contain starch grains and crystals of calcium oxalate. **Identification** (1) Shake vigorously 0.5 g of Powdered Senega with 10 mL of water: a lasting fine foam is produced. (2) Shake 0.5 g of Powdered Senega with 30 mL of water for 15 minutes, and filter. Take 1 mL of the filtrate, mix with 50 mL of water, and determine the absorption spectrum of the solution as directed under the Ultraviolet-visible Spectrophotometry: it exhibits a maximum at about 317 nm. **Purity** Foreign matter—Under a microscope, stone cells, starch grains or crystals of calcium oxalate are not observable. Loss on drying Not more than 13.0% (6 hours). Total ash Not more than 5.0%. Acid-insoluble ash Not more than 2.0%. **Extract content** Dilute ethanol-soluble extract: not less than 30.0%. # Senega Syrup Syrupus Senegae セネガシロップ #### Method of preparation | Senega, in medium cutting | 40 g | |---------------------------|-----------------------| | Sucrose | 780 g | | 10 vol% Ethanol | a sufficient quantity | | Purified Water | a sufficient quantity | To make 1000 mL Add 400 mL of 10 vol% ethanol to Senega, and macerate for one or two days. Filter the extract, wash the residue with a small amount of 10 vol% Ethanol, filter, and combine the filtrate of the extracts and washings until total volume measures about 500 mL. Dissolve Sucrose in the mixture, by warming if necessary, and dilute to 1000 mL with Purified Water. May be prepared with an appropriate quantity of Ethanol and Purified Water in place of 10 vol% Ethanol. **Description** Senega Syrup is a yellow-brown, viscous liquid. It has a characteristic odor resembling methyl salicylate and a sweet taste. **Identification** Add 5 mL of water to 1 mL of Senega Syrup, and shake: lasting small bubbles are produced. Containers and storage Containers—Tight containers. ### Senna Leaf Sennae Folium センナ Senna Leaf is the leaflets of Cassia angustifolia Vahl or Cassia acutifolia Delile (Leguminosae). It contains not less than 1.0% of total sennosides (sennoside A and sennoside B), calculated on the basis of dried material. **Description** Lanceolate to narrow lanceolate leaflets, 1.5-5 cm in length, 0.5-1.5 cm in width, light grayish yellow to light grayish yellow-green in color; margin entire, apex acute, base asymmetric, petiole short; under a magnifying glass, vein marked, primary lateral veins running toward the apex along the margin and joining the lateral vein above; lower surface having slight hairs. Odor slight; taste, bitter. Under a microscope, a transverse section of Senna Leaf reveals epidermis with thick cuticle, with numerous stomata, and with thick-walled, warty unicellular hairs; epidermal cells are often separated into two loculi by a septum which is in parallel with the surface of the leaf, and contain mucilage in the inner loculus; palisade of a single layer under each epidermis; spongy tissue, consisting of 3 to 4 layers, and containing clustered or solitary crystals of calcium oxalate; cells adjacent to vascular bundle, forming crystal cell rows. **Identification** (1) Macerate 0.5 g of pulverized Senna Leaf in 10 mL of diethyl ether for 2 minutes, and filter. Add 5 mL of ammonia TS to the filtrate: a yellow-red color is produced in the water layer. To the residue of maceration add 10 mL of water, and macerate for 2 minutes. Filter, and add 5 mL of ammonia TS: a yellow-red color is produced in the water layer. (2) To 2.0 g of pulverized Senna Leaf add 40 mL of a mixture of tetrahydrofuran and water (7:3), shake for 30 minutes, and centrifuge. Transfer the supernatant liquid to a separator, add 13 g of sodium chloride, and shake for 30 minutes. Separate the water layer with undissolved sodium chloride, and adjust the pH to 1.5 by adding 1 mol/L hydrochloric acid TS. Transfer this solution to another separator, shake with 30 mL of tetrahydrofuran for 10 minutes, separate the tetrahydrofuran layer, and use this solution as the sample solution. Separately, dissolve 1 mg of sennoside A for thin-layer chromatography in 1 mL of a mixture of tetrahydrofuran and water (7:3), and use this solution as the standard solution. Perform the test as directed under the Thin-layer Chromatography with the sample solution and the standard solution. Spot $10 \,\mu\text{L}$ each of these solutions on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of 1-propanol, ethyl acetate, water and acetic acid (100) (40:40:30:1) to a distance of about 15 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 365 nm): one spot among the spots from the sample solution and a red fluorescent spot from the standard solution show the same color tone and Rf value. **Purity** (1) Rachis and fruit—The amount of rachis and fruits contained in Senna Leaf does not exceed 5.0%. - (2) Foreign matter—The amount of foreign matter other than rachis and fruits contained in Senna Leaf does not exceed 1.0%. - (3) Total BHC's and total DDT's—Sodium chloride, anhydrous sodium sulfate and synthetic magnesium silicate for column chromatography used in this procedure are used after drying by heating at about 130°C for more than 12 hours and cooling in a desiccator (silica gel). Chromatographic column is prepared as follows: Place 20 g of synthetic magnesium silicate for column chromatography in a 200-mL flask, add 50 mL of hexane for Purity of crude drug, shake vigorously, and immediately pour the mixture into a chromatographic tube about 2 cm in inside diameter and about 30 cm in length. Drip until the depth of hexane layer at the upper part is about 5 cm, introduce 8 g of anhydrous sodium sulfate from the top, and further drip until a small quantity of hexane is left at the upper part. Weigh accurately about 5 g of pulverized Senna Leaf, place in a glass-stoppered centrifuge tube, add 30 mL of a mixture of acetone for Purity of crude drug and water (5:2), stopper tightly, shake for 15 minutes, centrifuge, and separate the supernatant liquid. Repeat the same procedure twice with the residue using two 30-mL portions of a mixture of acetone for Purity of crude drug and water (5:2). Combine all the supernatant liquids, and evaporate in a vacuum at a temperature not higher than 40°C until the order of acetone is faint. Transfer the evaporated solution to a separator containing 100 mL of sodium chloride TS, and shake twice with two 50-mL portions of hexane for Purity of crude drug for 5 minutes each. Combine the hexane solutions, transfer to a separator containing 50 mL of sodium chloride TS, and shake for 5 minutes. Take the hexane layer, dry over 30 g of anhydrous sodium sulfate, and filter. Wash the residue on the filter paper with 20 mL of hexane for Purity of crude drug. Combine the filtrate and the washings, and evaporate in a vacuum at a temperature not higher than 40°C to about 5 mL. Transfer this solution to the chromatographic column and allow to pass with 300 mL of a mixture of hexane for Purity of crude drug and diethyl ether for Purity of crude drug (17:3) at a rate of not more than 5 mL per minute. After evaporating the eluate in a vacuum at a temperature not higher than 40°C, add hexane for Purity of crude drug to make exactly 5 mL, and use this solution as the sample solution. Separately, weigh accurately about 0.01 g each of $\alpha$ -BHC, $\beta$ -BHC, $\gamma$ -BHC, $\delta$ -BHC, o,p'-DDT, p,p'-DDT, p,p'-DDD and p,p'-DDE, dissolve in 5 mL of acetone for Purity of crude drug and add hexane for Purity of crude drug to make exactly 100 mL. Pipet 10 mL of this solution, and add hexane for Purity of crude drug to make exactly 100 mL. Pipet 1 mL of this solution, add hexane for Purity of crude drug to make exactly 100 mL, and use this solution as the standard solution. Perform the test with 1 $\mu$ L each of the sample solution and the standard solution as directed under Gas Chromatography according to the following conditions, and determine the peak areas corresponding to $\alpha$ -BHC, $\beta$ -BHC, $\gamma$ -BHC, $\delta$ -BHC, o,p'-DDT, p,p'-DDT, p,p'-DDD and p,p'-DDE from each solution, $A_{\rm TA}$ and $A_{\rm SA}$ ; $A_{\rm TB}$ and $A_{\rm SB}$ ; $A_{\rm TC}$ and $A_{\rm SC}$ ; $A_{\rm TD}$ and $A_{\rm SH}$ ; $A_{\rm TE}$ and $A_{\rm SE}$ ; $A_{\rm TF}$ and $A_{\rm SF}$ ; $A_{\rm TG}$ and $A_{\rm SG}$ ; $A_{\rm TH}$ and $A_{\rm SH}$ . Calculate the content of each of $\alpha$ -BHC, $\beta$ -BHC, $\gamma$ -BHC, $\delta$ -BHC, o,p'-DDT, p,p'-DDT, p,p'-DDD and p,p'-DDE by means of the following equations, and determine the content of total BHC's and that of total DDT's: the content of total BHC's and that of total DDT's are each not more than 0.2 ppm. Content (ppm) of $$\alpha$$ -BHC $$= \frac{\text{amount (g) of }\alpha\text{-BHC}}{W} \times \frac{A_{\text{TA}}}{A_{\text{SA}}} \times 50$$ Content (ppm) of $\beta$ -BHC $$= \frac{\text{amount (g) of }\beta\text{-BHC}}{W} \times \frac{A_{\text{TB}}}{A_{\text{SB}}} \times 50$$ Content (ppm) of $\gamma$ -BHC $$= \frac{\text{amount (g) of }\gamma\text{-BHC}}{W} \times \frac{A_{\text{TC}}}{A_{\text{SC}}} \times 50$$ Content (ppm) of $\delta$ -BHC $$= \frac{\text{amount (g) of }\delta\text{-BHC}}{W} \times \frac{A_{\text{TD}}}{A_{\text{SD}}} \times 50$$ Content (ppm) of $o,p'$ -DDT $$= \frac{\text{amount (g) of }o,p'\text{-DDT}}{W} \times \frac{A_{\text{TE}}}{A_{\text{SE}}} \times 50$$ Content (ppm) of $p,p'$ -DDT $$= \frac{\text{amount (g) of }p,p'\text{-DDT}}{W} \times \frac{A_{\text{TF}}}{A_{\text{SF}}} \times 50$$ Content (ppm) of $p,p'$ -DDD $$= \frac{\text{amount (g) of }p,p'\text{-DDD}}{W} \times \frac{A_{\text{TG}}}{A_{\text{SG}}} \times 50$$ Content (ppm) of $p,p'$ -DDD $$= \frac{\text{amount (g) of }p,p'\text{-DDD}}{W} \times \frac{A_{\text{TG}}}{A_{\text{SG}}} \times 50$$ Content (ppm) of $p,p'$ -DDE $$= \frac{\text{amount (g) of }p,p'\text{-DDE}}{W} \times \frac{A_{\text{TH}}}{A_{\text{SH}}} \times 50$$ W: Amount (g) of pulverized Senna Leaf Content (ppm) of total BHC's = content (ppm) of $\alpha$ -BHC + content (ppm) of $\beta$ -BHC + content (ppm) of $\gamma$ -BHC + content (ppm) of $\delta$ -BHC Content (ppm) of total DDT's = content (ppm) of o,p'-DDT + content (ppm) of p,p'-DDT + content (ppm) of p,p'-DDD + content (ppm) of p,p'-DDE Operating conditions— Detector: An electron capture detector Sample injection system: A splitless injection system Column: A fused silica capillary column about 0.3 mm in inside diameter and about 30 m in length, coated the inside wall with 7% cyanopropyl-7% phenylmethylsilicone polymer for gas chromatography in a thickness of 0.25 to 1.0 $\mu$ m. Column temperature: Maintain the temperature at 60°C for 2 minutes after injection, program to increase the temper- ature at a rate of 10°C per minute to 200°C, and then program to increase the temperature at a rate of 2°C per minute to 260°C. Carrier gas: Helium Flow rate: Adjust the flow rate so that the retention times of the objective compounds are between 10 and 30 minutes. Selection of column: Proceed with $1\mu$ L of the standard solution under the above operating conditions. Use a column clearly separating each peak. System repeatability: Repeat the test 6 times with the standard solution under the above operating conditions: the relative standard deviation of the peak area is not more than 10% for any objective compound. Total ash Not more than 12.0%. Acid-insoluble ash Not more than 2.0%. Loss on drying Not more than 12.0% (6 hours). Component determination Weigh accurately about 0.5 g of pulverized Senna Leaf in a glass-stoppered centrifuge tube, add 25 mL of diluted methanol (7 in 10), shake for 30 minutes, centrifuge, and separate the supernatant liquid. To the residue add 10 mL of diluted methanol (7 in 10) twice, shake for 10 minutes, centrifuge, and separate the supernatant liquid, respectively. Combine all the extracts, add diluted methanol (7 in 10) to make exactly 50 mL, and use this solution as the sample solution. Separately, weigh accurately about 0.01 g of sennoside A for component determination, previously dried in a desiccator (in vacuum at a pressure not exceeding 0.67 kPa, phosphorus (V) oxide) for not less than 12 hours, dissolve in a solution of sodium hydrogen carbonate (1 in 100) to make exactly 20 mL, and use this solution as standard stock solution A. Weigh accurately about 0.01 g of sennoside B for component determination, previously dried in a desiccator (in vacuum at a pressure not exceeding 0.67 kPa, phosphorus (V) oxide) for not less than 12 hours, dissolve in a solution of sodium hydrogen carbonate (1 in 100) to make exactly 20 mL, and use this solution as standard stock solution B. Pipet 5 mL of the standard stock solution A and 10 mL of the standard stock solution B, add methanol to make exactly 50 mL, and use this solution as the standard solution. Pipet $10 \,\mu\text{L}$ of the sample solution and the standard solution, and perform the test as directed under the Liquid Chromatography according to the following conditions. Determine the peak areas, $A_{TA}$ and $A_{SA}$ , of sennoside A, and the peak areas, $A_{TB}$ and $A_{SB}$ , of sennoside B in each solution, calculate the amounts of sennoside A and sennoside B by the following equation, and designate the total as the amount of total sennosides. Amount (mg) of sennoside A = amount (mg) of sennoside A for component determination $$\times \frac{A_{\rm TA}}{A_{\rm SA}} \times \frac{1}{4}$$ Amount (mg) of sennoside B = amount (mg) of sennoside B for component determination $$\times \frac{A_{\rm TB}}{A_{\rm SB}} \times \frac{1}{2}$$ Operating conditions— Detector: An ultraviolet absorption photometer (wavelength: 340 nm). Column: A stainless steel column 4 to 6 mm in inside diameter and 15 to 25 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 to $10 \mu m$ in particle diameter). Column temperature: A constant temperature of about 50°C. Mobile phase: Dissolve 2.45 g of tetra-n-heptylammonium bromide in 1000 mL of a mixture of diluted 1 mol/L acetic acid-sodium acetate buffer solution, pH 5.0 (1 in 10) and acetonitrile (17:8). Flow rate: Adjust the flow rate so that the retention time of sennoside A is about 26 minutes. Selection of column: Perform the test with $10 \,\mu L$ of the standard solution under the above operating conditions. Use a column giving elution of sennoside B and sennoside A in this order, clearly dividing each peak, and the number of theoretical plates of the peak of sennoside A being not less than 8000. System repeatability: Repeat the test 6 times with the standard solution under the above operating conditions: the relative standard deviation of the peak areas of sennoside A is not more than 1.5%. ## **Powdered Senna Leaf** Sennae Folium Pulveratum センナ末 Powdered Senna Leaf is the power of Senna Leaf. It contains not less than 1.0% of total sennosides (sennoside A and sennoside B), calculated on the basis of dried material. **Description** Powdered Senna Leaf occurs as a light yellow to light grayish yellow-green powder. It has a slight odor and a bitter taste. Under a microscope, Powdered Senna Leaf reveals fragments of vessels and vein tissue accompanied with crystal cell rows; fragments of thick-walled, bent, unicellular hairs; fragments of palisade and spongy tissue; clustered and solitary crystals of calcium oxalate, 10 to 20 $\mu$ m in diameter. **Identification** (1) Macerate 0.5 g of Powdered Senna Leaf in 10 mL of diethyl ether for 2 minutes, and filter. Add 5 mL of ammonia TS to the filtrate: a yellow-red color is produced in the water layer. To the residue of maceration add 10 mL of water, and macerate for 2 minutes. Filter, and add 5 mL of ammonia TS: a yellow-red color is produced in the water layer. (2) To 2.0 g of Powdered Senna Leaf add 40 mL of a mixture of tetrahydrofuran and water (7:3), shake for 30 minutes, and centrifuge. Transfer the supernatant liquid to a separator, add 13 g of sodium chloride, and shake for 30 minutes. Separate the water layer with undissolved sodium chloride, and adjust the pH to 1.5 with 1 mol/L hydrochloric acid TS. Transfer this solution to another separator, shake with 30 mL of tetrahydrofuran for 10 minutes, separate the tetrahydrofuran layer, and use this solution as the sample solution. Separately, dissolve 1 mg of sennoside A for thin-layer chromatography in 1 mL of a mixture of tetrahydrofuran