Dried Sodium Sulfite 乾燥亜硫酸ナトリウム Na₂SO₃: 126.04 Dried Sodium Sulfite contains not less than 97.0% of Na₂SO₃. **Description** Dried Sodium Sulfite is white crystals or powder. It is odorless. It is freely soluble in water, and practically insoluble in ethanol (95) and in diethyl ether. The pH of a solution of Dried Sodium Sulfite (1 in 10) is about 10. It gradually changes in moist air. **Identification** An aqueous solution of Dried Sodium Sulfite (1 in 20) responds to the Qualitative Tests for sodium salt and sulfite. **Purity** (1) Thiosulfate—Dissolve 1.0 g of Dried Sodium Sulfite in 15 mL of water, add gradually 5 mL of hydrochloric acid, shake, and allow to stand for 5 minutes: no turbidity is produced. - (2) Heavy metals—Dissolve 1.0 g of Dried Sodium Sulfite in 5 mL of water, add 2 mL of hydrochloric acid gradually, and evaporate the mixture on a water bath to dryness. Add 3 mL of boiling water and 1 mL of hydrochloric acid to the residue, and again evaporate to dryness on a water bath. Dissolve the residue in 2 mL of dilute acetic acid and water to make 50 mL, and perform the test using this solution as the test solution. Prepare the control solution as follows: evaporate 3 mL of hydrochloric acid to dryness, and add 2 mL of dilute acetic acid, 2.0 mL of Standard Lead Solution and water to make 50 mL (not more than 20 ppm). - (3) Arsenic—Dissolve 0.5 g of Dried Sodium Sulfite in 5 mL of water, add 1 mL of sulfuric acid, and evaporate on a sand bath until white fumes are evolved. Add water to make 5 mL, take this solution as the sample solution, and perform the test using Apparatus B (not more than 4 ppm). Assay Weigh accurately about 0.2 g of Dried Sodium Sulfite, transfer immediately to an iodine flask containing exactly 50 mL of 0.05 mol/L iodine VS, stopper, shake, and allow to stand for 5 minutes in a dark place. Add 1 mL of hydrochloric acid, and titrate the excess iodine with 0.1 mol/L sodium thiosulfate VS (indicator: 1 mL of starch TS). Perform a blank determination. Each mL of 0.05 mol/L iodine VS = 6.302 mg of Na_2SO_3 Containers and storage Containers—Tight containers. # Sophora Root Sophorae Radix クジン Sophora Root is the root of Sophora flavescens Aiton (Leguminosae) or often such root from which the periderm has been removed. **Description** Cylindrical root, 5-20 cm in length, 2-3 cm in diameter; externally dark brown to yellow-brown, with distinct longitudinal wrinkles, and with laterally extended lenticels; root without periderm, externally yellowish white, with somewhat fibrous surface; the transversely cut surface, light yellow-brown; cortex, 0.1-0.2 cm in thickness, slightly tinged with dark color near cambium, forming a crack between xylem. Odor, slight; taste, extremely bitter and lasting. **Identification** To 0.5 g of powdered Sophora Root add 10 mL of dilute acetic acid, heat on a water bath for 3 minutes with occasional shaking, cool, and filter. To 5 mL of the filtrate add 2 drops of Dragendorff's TS: an orange-yellow precipitate is produced immediately. **Purity** (1) Stem—The amount of its stems contained in Sophora Root does not exceed 10.0%. (2) Foreign matter—The amount of foreign matter other than stems contained in Sophora Root does not exceed 1.0%. Total ash Not more than 6.0%. Acid-insoluble ash Not more than 1.5%. #### **Powdered Sophora Root** Sophorae Radix Pulverata クジン末 Powdered Sophora Root is the powder of Sophora Root. **Description** Powdered Sophora Root occurs as a light brown powder. It has a slight odor, and an extremely bitter and lasting taste. Under a miscroscope, Powdered Sophora Root reveals mainly starch grains and fragments of parenchyma cells containing them, fibers, bordered pitted vessels, reticulate vessels; a few fragments of corky tissue and solitary crystals of calcium oxalate. Starch grains usually composed of 2- to 4-compound grains $15-20~\mu m$ in diameter, and simple grains $2-5~\mu m$ in diameter. **Identification** To 0.5 g of Powdered Sophora Root add 10 mL of dilute acetic acid, heat on a water bath for 3 minutes while occasional shaking, cool, and filter. To 5 mL of the filtrate add 2 drops of Dragendorff's TS: an orange-yellow precipitate is produced immediately. Total ash Not more than 6.0%. Acid-insoluble ash Not more than 1.5%. ### Sorbitan Sesquioleate セスキオレイン酸ソルビタン Sorbitan Sesquioleate is a mixture of monoester and diester of sorbitol anhydride, partially esterified with oleic acid. **Description** Sorbitan Sesquioleate is a pale yellow to light yellow-brown, viscous oily liquid. It has a faint, characteristic odor and a slightly bitter taste. It is freely soluble in diethyl ether, slightly soluble in ethanol (95), and very slightly soluble in methanol. It is dispersed as fine oily drops in water. **Identification** (1) To 0.5 g of Sorbitan Sesquioleate add 5 mL of ethanol (95) and 5 mL of dilute sulfuric acid, and heat on a water bath for 30 minutes. Cool, shake with 5 mL of petroleum ether, and allow to stand, and separate the upper layer and the lower layer. Shake 2 mL of the lower layer with 2 mL of freshly prepared catechol solution (1 in 10), then with 5 mL of sulfuric acid: a red to red-brown color develops. (2) Heat the upper layer obtained in (1) on a water bath, and evaporate petroleum ether. To the residue add 2 mL of diluted nitric acid (1 in 2), and then add 0.5 g of potassium nitrite between 30°C and 35°C with stirring: the solution develops an opalescence, and, when cooled, crystals are formed. **Specific gravity** d_{25}^{25} : 0.960 – 1.020 Saponification value 150 - 168 **Purity** (1) Acid—To 2.0 g of Sorbitan Sesquioleate add 50 mL of neutralized ethanol, and heat on a water bath nearly to boiling with stirring once or twice. Cool, add 4.3 mL of 0.1 mol/L sodium hydroxide VS and 5 drops of phenolphthalein TS: a red color develops. - (2) Heavy metals—Proceed with 1.0 g of Sorbitan Sesquioleate according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm). - (3) Arsenic—Prepare the test solution with 1.0 g of Sorbitan Sesquioleate according to Method 2, and perform the test using Apparatus B (not more than 2 ppm). Water Not more than 3.0% (1 g, direct titration, stir for 30 minutes). Residue on ignition Not more than 1.0% (1 g). Containers and storage Containers—Tight containers. ## Soybean Oil Oleum Sojae ダイズ油 Soybean Oil is the fixed oil obtained from the seeds of *Glycine max* merrill (*Leguminosae*). **Description** Soybean Oil is a clear, pale yellow oil. It is odorless or has a slight odor, and has a bland taste. It is miscible with diethyl ether and with petroleum ether. It is slightly soluble in ethanol (95), and practically insoluble in water. It congeals between -10° C and -17° C. Congealing point of the fatty acids: $22 - 27^{\circ}$ C **Specific gravity** d_{25}^{25} : 0.916 – 0.922 Acid value Not more than 0.2. Saponification value 188 – 195 Unsaponifiable matter Not more than 1.0%. Iodine value 126 - 140 Containers and storage Containers—Tight containers. #### Stearic Acid ステアリン酸 Stearic Acid is solid fatty acids obtained from fats, and it consists chiefly of stearic acid ($C_{18}H_{36}O_2$) and palmitic acid ($C_{16}H_{32}O_2$). **Description** Stearic Acid occurs as white, unctuous or crystalline masses or powder. It has a faint, fatty odor. It is freely soluble in diethyl ether, soluble in ethanol (95), and practically insoluble in water. Melting point: 56 - 72°C (Method 2). Acid value 194 - 210 Iodine value Not more than 4.0. **Purity** (1) Mineral acid—Melt 5 g of Stearic Acid by warming, shake with 5 mL of boiling water for 2 minutes, filter after cooling, and add 1 drop of methyl orange TS to the filtrate: no red color develops. - (2) Heavy metals—Proceed with 1.0 g of Stearic Acid according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm). - (3) Fat and paraffin—Boil 1.0 g of Stearic Acid with 0.5 g of anhydrous sodium carbonate and 30 mL of water: the solution, while hot, is clear or not more turbid than the following control solution. Control solution: To 0.70 mL of 0.01 mol/L hydrochloric acid VS add 6 mL of dilute nitric acid and water to make 30 mL, and add 1 mL of silver nitrate TS. **Residue on ignition** Not more than 0.10% (1 g). Containers and storage Containers—Well-closed containers. ### Stearyl Alcohol ステアリルアルコール Stearyl Alcohol is a mixture of solid alcohols, and consists chiefly of stearyl alcohol ($C_{18}H_{38}O$). **Description** Stearyl Alcohol occurs as a white, unctuous matter. It has a faint, characteristic odor. It is tasteless. It is freely soluble in ethanol (95), in ethanol (99.5), in diethyl ether, and practically insoluble in water. Melting point 56 – 62°C (Method 2). Acid value Not more than 1.0. Ester value Not more than 3.0.