1069

Thymol

チモール

C₁₀H₁₄O: 150.22

2-Isopropyl-5-methylphenol [89-83-8]

Thymol contains not less than 98.0% of $C_{10}H_{14}O$.

Description Thymol occurs as colorless crystals or white, crystalline masses. It has an aromatic odor, and has a burning taste.

It is very soluble in acetic acid (100), freely soluble in ethanol (95) and in diethyl ether, and slightly soluble in water.

It sinks in water, but when warmed, it melts and rises to the surface of water.

Identification (1) To 1 mL of a solution of Thymol in acetic acid (100) (1 in 300) add 6 drops of sulfuric acid and 1 drop of nitric acid: a blue-green color develops by reflected light and a red-purple color develops by transmitted light.

(2) Dissolve 1 g of Thymol in 5 mL of a solution of sodium hydroxide (1 in 10) by heating in a water bath, and continue heating for several minutes: a light yellow-red color slowly develops. Allow this solution to stand at room temperature: the color changes to dark yellow-brown. Shake this solution with 2 to 3 drops of chloroform: a purple color gradually develops.

(3) Triturate Thymol with an equal mass of camphor or menthol: the mixture liquefies.

Melting point 49 – 51°C

Purity (1) Non-volatile residue—Volatilize 2.0 g of Thymol by heating on a water bath, and dry the residue at 105°C for 2 hours: the mass is not more than 1.0 mg.

(2) Other phenols—Shake vigorously 1.0 g of Thymol with 20 mL of warm water for 1 minute, and filter. To 5 mL of the filtrate add 1 drop of iron (III) chloride TS: a green color may develop, but no blue to purple color develops.

Assay Weigh accurately about 0.5 g of Thymol, dissolve in 10 mL of sodium hydroxide TS, and add water to make exactly 100 mL. Measure exactly 10 mL of the solution into an iodine flask, add 50 mL of water and 20 mL of dilute sulfuric acid, and cool in ice water for 30 minutes. Add exactly 20 mL of 0.05 mol/L bromine VS, stopper tightly immediately, allow to stand for 30 minutes in ice water with occasional shaking in a dark place, add 14 mL of potassium iodide TS and 5 mL of chloroform, stopper tightly, shake vigorously, and titrate the liberated iodine with 0.1 mol/L sodium thiosulfate VS (indicator: 3 mL of starch TS). Stopper tightly, shake vigorously near the end point, and continue the titration until the blue color in the chloroform layer disappears. Perform a blank determination.

Each mL of 0.05 mol/L bromine VS = 3.7555 mg of $C_{10}H_{14}O$

Containers and storage Containers—Tight containers. Storage—Light-resistant.

Dried Thyroid

乾燥甲状腺

Dried Thyroid is the fresh thyroid gland, previously deprived of connective tissue and fat, minced, dried rapidly at a temperature not above 50°C, and powdered, or diluted with suitable diluents. It is obtained from domesticated animals that are used for food by man.

It contains not less than 0.30% and not more than 0.35% of iodine (I: 126.90) in the form of organic compounds peculiar to the thyroid gland.

Description Dried Thyroid occurs as a light yellow to grayish brown powder. It has a slight, characteristic, meat-like odor.

Identification Mount Dried Thyroid in diluted formaldehyde solution (1 in 10), stain in hematoxylin TS for 10 to 30 minutes, wash with water, soak in a mixture of 1 mL of hydrochloric acid and 99 mL of diluted ethanol (7 in 10) for 5 to 10 seconds, and again wash with water for about 1 hour. Stain in a solution of eosin Y (1 in 100) for 1 to 5 minutes, wash with water, dehydrate, and soak successively in diluted ethanol (7 in 10) for 5 to 10 seconds, in diluted ethanol (4 in 5) for 5 to 10 seconds, in diluted ethanol (9 in 10) for 1 to 2 minutes, in ethanol (95) for 1 to 5 minutes then in ethanol (99.5) for 1 to 5 minutes. Interpenetrate in xylene, seal with balsam, and examine under a microscope: epithelial nuclei forming follicles peculiar to the thyroid gland are observed.

Purity (1) Inorganic iodides—Mix 1.0 g of Dried Thyroid with 10 mL of a saturated solution of zinc sulfate heptahydrate, shake for 5 minutes, and filter. To 5 mL of the filtrate add 0.5 mL of starch TS, 4 drops of sodium nitrite TS and 4 drops of dilute sulfuric acid with thorough shaking: no blue color is produced.

(2) Fat—Extract 1.0 g of Dried Thyroid with diethyl ether for 2 hours using a Soxhlet extractor. Evaporate the diethyl ether extract, and dry the residue at 105°C to constant mass: the mass of the residue is not more than 0.030 g.

Loss on drying Not more than 6.0% (1 g, 105°C, constant mass).

Total ash Not more than 5.0% (0.5 g, proceed as directed in Total ash under the Crude Drugs).

Assay Transfer about 1 g of Dried Thyroid, accurately weighed, to a crucible, add 7 g of potassium carbonate, mix carefully, and gently tap the crucible on the table to compact the mixture. Overlay with 10 g of potassium carbonate, and compact again thoroughly by tapping. Place the crucible in a muffle furnace preheated to a temperature between 600°C and 700°C, and ignite the mixture for 25 minutes. Cool, add 20 mL of water, heat gently to boiling, and filter into a flask. To the residue add 20 mL of water, boil, and filter into the same flask. Rinse the crucible and the char on the funnel with boiling water until the filtrate measures 200 mL. Add slowly