and practically insoluble in water and in diethyl ether. It dissolves in sodium hydroxide TS.

Acid value 60 – 80 Weigh accurately about 1 g of Purified Shellac, add 40 mL of neutralized ethanol, and dissolve by warming. After cooling, titrate with 0.1 mol/L potassium hydroxide VS (potentiometric titration).

- **Purity** (1) Heavy metals—Proceed with 2.0 g of Purified Shellac according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).
- (2) Arsenic—Prepare the test solution with 0.40 g of Purified Shellac according to Method 3, and perform the test using Apparatus B. Add 10 mL of a solution of magnesium nitrate hexahydrate in ethanol (95) (1 in 50), then add 1.5 mL of hydrogen peroxide (30), and fire to burn (not more than 5 ppm).
- (3) Ethanol-insoluble substances—Dissolve about 5 g of Purified Shellac, accurately weighed, in 50 mL of ethanol (95) on a water bath while shaking. Pour the ethanol solution into a tared extraction thimble, previously dried at 105 °C for 2 hours, in a Soxhlet extractor, and extract with ethanol (95) for 3 hours: the mass of the residue is not more than 2.0%. Use a cylindrical weighing bottle for taring the extraction thimble.
- (4) Rosin—Dissolve 2.0 g of Purified Shellac in 10 mL of ethanol (99.5) with thorough shaking, add gradually 50 mL of petroleum ether while shaking, and filter, if necessary. Wash the solution with two 50-mL portions of water, filter the upper layer, and evaporate the filtrate on a water bath to dryness. Dissolve the residue in 2 mL of a mixture of carbon tetrachloride and phenol (2:1), transfer the solution to a depression of a spot plate, and fill the neighboring depression with a mixture of carbon tetrachloride and bromine (4:1). Immediately cover both depressions with a watch glass, and allow to stand: the solution of the residue exhibits no purple or blue color within 1 minute.
- (5) Wax—Dissolve 10.0 g of Purified Shellac in 150 mL of a solution of sodium carbonate decahydrate (9 in 200) with shaking on a water bath, and continue the heating for 2 hours. After cooling, collect the floating wax by filtration, wash the wax and the filter paper with water, transfer to a beaker, and dry at 65°C until the water is almost evaporated. Transfer the wax together with the filter paper to an extraction thimble in a Soxhlet extractor. Dissolve the wax remaining in the beaker with a suitable quantity of chloroform by warming. Pour the solution into the thimble, and extract with chloroform for 2 hours. Evaporate the chloroform solution to dryness, ad dry the residue at 105°C for 3 hours: the mass of the residue is not more than 20 mg.

Loss on drying Not more than 2.0%. Weigh accurately about 1 g of medium powder of Purified Shellac, and dry at 40°C for 4 hours, then for 15 hours in a desiccator (calcium chloride for drying).

Total ash Not more than 1.0% (1 g, proceed as directed in the total ash under the Crude Drugs Test).

Containers and storage Containers—Well-closed containers.

White Shellac

白色セラック

White Shellac is a resin-like substance obtained from a bleached secretion of *Laccifer lacca* Kerr (*Coccidae*).

Description White Shellac occurs as yellowish white to light yellow, hard, brittle granules. It is odorless or has a faint, characteristic odor.

It is sparingly soluble in ethanol (95), very slightly soluble in petroleum ether, and practically insoluble in water.

It dissolves in sodium hydroxide TS.

Acid value 65-90 Weigh accurately about 0.5 g of White Shellac, add 50 mL of neutralized ethanol as a solvent, and dissolve by warming. After cooling, perform the test.

- **Purity** (1) Chloride—Shake and dissolve 0.40 g of White Shellac in 5 mL of ethanol (95) while warming, add 40 mL of water, and cool. Add 12 mL of dilute nitric acid and water to make 100 mL, and filter. Perform the test using 50 mL of the filtrate as the test solution. Prepare the control solution as follows: to 0.80 mL of 0.01 mol/L hydrochloric acid VS add 2.5 mL of ethanol (95), 6 mL of dilute nitric acid and water to make 50 mL (not more than 0.140%).
- (2) Sulfate—Shake and dissolve 0.40 g of White Shellac in 5 mL of ethanol (95) by warming, add 40 mL of water, and cool. Add 2 mL of dilute hydrochloric acid and water to make 100 mL, and filter. Perform the test using 50 mL of the filtrate as the test solution. Prepare the control solution as follows: to 0.45 mL of 0.005 mol/L sulfuric acid VS add 2.5 mL of ethanol (95), 1 mL of dilute hydrochloric acid and water to make 50 mL (not more than 0.110%).
- (3) Heavy metals—Proceed with 2.0 g of White Shellac according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm.)
- (4) Arsenic—Prepare the test solution with 0.40 g of White Shellac according to Method 3, and perform the test using Apparatus B. Add 10 mL of a solution of magnesium nitrate hexahydrate in ethanol (95) (1 in 50), then add 1.5 mL of hydrogen peroxide (30), and fire to burn (not more than 5 ppm).
- (5) Ethanol-insoluble substances—Dissolve about 5 g of White Shellac, accurately weighed, in 50 mL of ethanol (95) on a water bath while shaking. Pour the ethanol solution into a tared extraction thimble, previously dried at 105°C for 2 hours, in a Soxhlet extractor, and extract with ethanol (95) for 3 hours: the mass of the residue is not more than 2.0%. Use a cylindrical weighing bottle for taring the extraction thimble.
- (6) Rosin—Dissolve 2.0 g of White Shellac in 10 mL of ethanol (99.5) with thorough shaking, add gradually 50 mL of petroleum ether while shaking, and filter, if necessary. Wash the solution with two 50-mL portions of water, filter the upper layer, and evaporate the filtrate on a water bath to dryness. Dissolve the residue in 2 mL of a mixture of carbon tetrachloride and phenol (2:1), transfer the solution to a depression of a spot plate, and fill the neighboring depression with a mixture of carbon tetrachloride and bromine (4:1). Immediately cover both depressions with a watch glass, and allow to stand: the solution of the residue exhibits

no purple or blue color within 1 minute.

(7) Wax—Dissolve 10.0 g of White Shellac in 150 mL of a solution of sodium carbonate decahydrate (9 in 200) with shaking on a water bath, and continue the heating for 2 hours. After cooling, collect the floating wax by filtration, wash the wax and the filter paper with water, transfer to a beaker, and dry at 65°C until the water is almost evaporated. Transfer the wax together with the filter paper to an extraction thimble in a Soxhlet extractor. Dissolve the wax remaining in the beaker with a suitable quantity of chloroform by warming. Pour the solution into the thimble, and extract with chloroform for 2 hours. Evaporate the chloroform solution to dryness, and dry the residue at 105°C for 3 hours: the mass of the residue is not more than 20 mg.

Loss on drying Not more than 6.0%. Weigh accurately about 1 g of medium powder of White Shellac, and dry at 40°C for 4 hours, then for 15 hours in a desiccator (calcium chloride for drying).

Total ash Not more than 1.0% (1 g, proceed as directed in the total ash under the Crude Drugs Test).

Containers and storage Containers—Well-closed containers

Storage—In a cold place.

Light Anhydrous Silicic Acid

軽質無水ケイ酸

Light Anhydrous Silicic Acid, calculated on the incinerated basis, contains not less than 98.0% of silicon dioxide (SiO₂: 60.08).

Description Light Anhydrous Silicic Acid occurs as a white to bluish white, light, fine power. It is odorless and tasteless, and smooth to the touch.

It is practically insoluble in water, in ethanol (95), and in diethyl ether.

It dissolves in hydrofluoric acid, in hot potassium hydroxide TS and in hot sodium hydroxide TS, and does not dissolve in dilute hydrochloric acid.

Identification (1) Dissolve 0.1 g of Light Anhydrous Silicic Acid in 20 mL of sodium hydroxide TS by boiling, and add 12 mL of ammonium chloride TS: a white, gelatinous precipitate is produced. The precipitate does not dissolve in dilute hydrochloric acid.

- (2) To the precipitate obtained in (1) add 10 mL of a solution of methylene blue trihydrate (1 in 10,000), and wash with water: the precipitate has a blue color.
- (3) Prepare a bead by fusing ammonium sodium hydrogenphosphate tetrahydrate on a platinum loop. Bring the hot, transparent bead into contact with Light Anhydrous Silicic Acid, and fuse again: an insoluble matter is perceptible in the bead. The resulting bead, upon cooling, becomes opaque and acquires a reticulated appearance.
- **Purity** (1) Chloride—Dissolve 0.5 g of Light Anhydrous Silicic Acid in 20 mL of sodium hydroxide TS by boiling, cool, filter if necessary, and wash with 10 mL of water. Combine the filtrate and washings, add 18 mL of dilute nitric acid, shake, and add water to make 50 mL. Perform the test

using this solution as the test solution. To 0.15 mL of 0.01 mol/L hydrochloric acid VS add 20 mL of sodium hydroxide TS, 18 mL of dilute nitric acid and water to make 50 mL, and use this solution as the control solution (not more than 0.011%).

- (2) Heavy metals—Dissolve 0.5 g of Light Anhydrous Silicic Acid in 20 mL of sodium hydroxide TS by boiling, cool, add 15 mL of acetic acid (31), shake, filter if necessary, wash with 10 mL of water, combine the filtrate and washings, and add water to make 50 mL. Perform the test using this solution as the test solution. Add acetic acid (31) to 20 mL of sodium hydroxide TS and 1 drop of phenolphthalein TS until the color of this solution disappears, add 2.0 mL of Standard Lead Solution, 2 mL of dilute acetic acid and water to make 50 mL, and use this solution as the control solution (not more than 40 ppm).
- (3) Aluminum—Dissolve 0.5 g of Light Anhydrous Silicic Acid in 40 mL of sodium hydroxide TS by boiling, cool, add sodium hydroxide TS to make 50 mL, and filter. Measure 10 mL of the filtrate, add 17 mL of acetic acid (31), shake, add 2 mL of aluminon TS and water to make 50 mL, and allow to stand for 30 minutes: the color of this solution is not deeper than that of the following control solution.

Control solution: Dissolve 0.176 g of aluminum potassium sulfate 12-water in water, and add water to make 1000 mL. To 15.5 mL of this solution add 10 mL of sodium hydroxide TS, 17 mL of acetic acid (31), 2 mL of aluminon TS and water to make 50 mL.

- (4) Iron—To 0.040 g of Light Anhydrous Silicic Acid add 10 mL of dilute hydrochloric acid, and heat for 10 minutes in a water bath while shaking. After cooling, add 0.5 g of L-tartaric acid to dissolve by shaking. Prepare the test solution with this solution according to Method 2, and perform the test according to Method B. Prepare the control solution with 2.0 mL of Standard Iron Solution (not more than 500 ppm).
- (5) Calcium—Dissolve 1.0 g of Light Anhydrous Silicic Acid in 30 mL of sodium hydroxide TS by boiling, cool, add 20 mL of water, 1 drop of phenolphthalein TS and dilute nitric acid until the color of this solution disappears, immediately add 5 mL of dilute acetic acid, shake, add water to make 100 mL, and obtain a clear liquid by centrifugation or filtration. To 25 mL of this liquid add 1 mL of oxalic acid TS and ethanol (95) to make 50 mL, immediately shake, and allow to stand for 10 minutes: the turbidity of this solution is not deeper than that of the following control solution.

Control solution: Dissolve 0.250 g of calcium carbonate, previously dried at 180°C for 4 hours, in 3 mL of dilute hydrochloric acid, and add water to make 100 mL. To 4 mL of this solution add 5 mL of dilute acetic acid and water to make 100 mL. To 25 mL of this solution add 1 mL of oxalic acid TS and ethanol (95) to make 50 mL, and shake.

(6) Arsenic—Dissolve 0.40 g of Light Anhydrous Silicic Acid in 10 mL of sodium hydroxide TS by boiling in a porcelain crucible, cool, add 5 mL of water and 5 mL of dilute hydrochloric acid, shake, and perform the test using Apparatus B with this solution as the test solution (not more than 5 ppm).

Loss on drying Not more than 7.0% (1 g, 105°C, 4 hours).

Loss on ignition Not more than 12.0% (1 g, 850 – 900°C, constant mass).

Volume test Weigh 5.0 g of Light Anhydrous Silicic Acid,